

 2

.NET 8 and C# 12

Succinctly®

Dirk Strauss
Foreword by Daniel Jebaraj

 3

 Copyright © 2025 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 111

Morrisville, NC 27560

USA

All rights reserved.

ISBN: 978-1-64200-243-0

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free

copy from www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information

provided.

The authors and copyright holders shall not be liable for any claim, damages, or any

other liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

BOLDDESK, BOLDSIGN, BOLD BI, BOLD REPORTS, SYNCFUSION, ESSENTIAL, ESSENTIAL STUDIO,

SUCCINCTLY, and the ‘Cody’ mascot logo are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, VP of content, Syncfusion, Inc.

Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 4

Table of Contents

The Succinctly® Series of Books ... 6

About the Author ... 7

Chapter 1 Introducing .NET 8 .. 8

The support window .. 13

Preview ... 15

Go-live .. 15

Active support ... 15

Maintenance support .. 15

End of life .. 15

What’s changed in .NET 8 .. 15

The .NET runtime .. 16

Garbage collection .. 16

Core .NET libraries ... 17

Extension libraries .. 37

C# 12 .. 47

.NET Aspire ... 47

In conclusion ... 47

Chapter 2 A Closer Look at C# 12 ... 48

Primary constructors ... 49

What the compiler sees .. 50

Collection expressions .. 52

Ref readonly parameters... 53

Default lambda parameters ... 61

 5

Alias any type .. 62

Experimental attribute ... 62

Interceptors ... 65

In conclusion ... 70

Chapter 3 More New .NET 8 Features ... 71

AOT support .. 71

AOT advantages ... 75

AOT disadvantages .. 75

When to use AOT ... 76

New exception handling in ASP.NET Core 8 .. 76

Bearer tokens in .NET 8 Identity ... 81

Data annotations updates ... 89

Range attribute with minimum and maximum exclusive 91

Length attribute ... 92

AllowedValues attribute .. 93

DeniedValues attribute ... 93

Base64String attribute .. 94

In conclusion ... 94

 6

The Succinctly® Series of Books

Daniel Jebaraj
CEO of Syncfusion®, Inc.

When we published our first Succinctly® series book in 2012, jQuery Succinctly®, our goal was
to produce a series of concise technical books targeted at software developers working primarily
on the Microsoft platform. We firmly believed then, as we do now, that most topics of interest
can be translated into books that are about 100 pages in length.

We have since published over 200 books that have been downloaded millions of times.
Reaching more than 1.7 million readers around the world, we have more than 70 authors who
now cover a wider range of topics, such as Blazor, machine learning, and big data.

Each author is carefully chosen from a pool of talented experts who share our vision. The book
before you and the others in this series are the result of our authors’ tireless work. Within these
pages, you will find original content that is guaranteed to get you up and running in about the
time it takes to drink a few cups of coffee.

We are absolutely thrilled with the enthusiastic reception of our books. We believe the
Succinctly series is the largest library of free technical books being actively published today.
Truly exciting!

Our goal is to keep the information free and easily available so that anyone with a computing
device and internet access can obtain concise information and benefit from it. The books will
always be free. Any updates we publish will also be free.

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctlyseries@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on social media and help us spread the word about the Succinctly® series!

mailto:succinctlyseries@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion
https://www.linkedin.com/company/syncfusion

 7

About the Author

As a seasoned software developer with over 17 years of experience utilizing C# and Visual
Studio, I have had the privilege of working with a number of companies and learning from some
of the most talented individuals in the industry. In addition to my professional experience, I have
published multiple books on topics such as C#, Visual Studio, and ASP.NET Core. My passion
for programming is unwavering, and I am dedicated to staying current with the latest technology
and sharing my expertise with others.

 8

Chapter 1 Introducing .NET 8

Microsoft began working on .NET in 1998, and it has since evolved into a tour de force among
developers worldwide. From its birth in 2002, .NET has advanced to keep up with the changing
demands of the IT landscape, much like biological species evolve to adapt to their surroundings.
Introduced as the .NET Framework, it offered a rich set of libraries and tools, becoming popular
with an army of software developers globally.

In 2016, entering the .NET Core years, Microsoft announced the open-source, cross-platform
implementation of the .NET Framework, refactored and renamed .NET Core. For us old enough
to remember the first incarnations of the .NET Framework, the idea of .NET Core seemed
almost magical. Enabling developers to build and run apps on Windows, macOS, and Linux,
.NET Core quickly gained adoption in the industry.

Figure 1: The Jump in Versions

Microsoft finally unified the .NET ecosystem with the release of .NET 5 in 2020. Looking at
Figure 1, you will notice that there seems to be a jump between .NET Core 3.1 and .NET 5.
Version 4 was skipped to avoid confusion with the .NET Framework versions. Microsoft touted
.NET 5.0 as a single, unified platform that would replace .NET Core, Xamarin, and the .NET
Framework.

.NET Core 1.0 was released in 2016 and heralded the start of what we know today as .NET 8.
Before this release, developers were accustomed to the .NET Framework, released in the early
2000s. It was closed-source and only ran on Windows. .NET Core was the first .NET version to
run across platforms and is an open-source project.

.NET Core saw many releases between 2016 and 2018, culminating in the release of .NET
Core 3.1 in 2019. .NET Core 3.1 was a long-term support version, with support for it ending in
December 2022.

Many companies developed software on .NET Core 3.1 due to its long-term support status. It
was, therefore, a very popular version of .NET Core. Then, in 2020, Microsoft surprised us all
with the release of .NET 5.0. Support for .NET 5.0 ended in May 2022.

 9

Figure 2: .NET 2002 to 2007

 10

Figure 3: .NET 2010 to 2016

 11

Figure 4: .NET 2017 to 2019

 12

Figure 5: .NET 2020 to 2023

 13

In November 2021, Microsoft released .NET 6.0, with long-term support until December 2024.
This introduced a host of new features and realized the unification of the various .NET platforms
into a single .NET version.

The standard term support release of .NET 7.0 in November 2022 brought us closer to where
we are today: with a unified .NET that supports cross-platform application development. It
allows developers to create a host of different applications, from desktop apps to cloud apps,
web applications, Unity games, mobile applications, and AI apps. With the release of MAUI, we
can create cross-platform, native UI applications. The unification of .NET means that we now
have a single BCL (or base class library) and SDK.

With the release of .NET 8 in November 2023, we now have a long-term support version of
.NET until November 2026. For companies that never upgraded their software to .NET 7, take
note that the end of support for .NET 6 was November 2024. If your company implements
stringent change control processes, it would be prudent to start planning the implementation of
.NET 8 across your applications early.

Let’s have a look at the support windows for .NET next.

The support window

By now, most of your applications should be on .NET 6. However, I have come across a few
applications myself that are still stuck on .NET Core 3.1—most notably, an institution in
Johannesburg that is currently running their software, used to manage the compliance of
financial professionals across South Africa, on .NET Core 3.1.

I use the word “stuck” carefully here. It’s not that the company that developed the software has
neglected to upgrade the version of .NET—the issue is that the company using the software
refuses to incur additional cost to have the .NET version upgraded.

 Note: You will incur some cost by upgrading your .NET version, since the
software needs to be tested thoroughly after an upgrade to ensure the stability of the
codebase.

If you are on the fence, however, see when your implemented .NET version support ends.

Table 1: Release and End-of-Support Dates

Version Original Release Release Type End of Support

.NET 8 Nov. 14, 2023 LTS Nov. 10, 2026

.NET 7 Nov. 8, 2022 STS May 14, 2024

.NET 6 Nov. 8, 2021 LTS Nov. 12, 2024

By looking at Table 1, you can determine when support for the version of .NET implemented by
your software ends. If your software does not implement at least .NET 6, then you need to
upgrade your software.

 14

Table 2 outlines the version of .NET or .NET Core and when support ended.

Table 2: Out of Support Versions

Version Original Release End of Support

.NET 5 Nov. 10, 2020 May 10, 2022

.NET Core 3.1 Dec. 3, 2019 Dec. 13, 2022

.NET Core 3.0 Sept. 23, 2019 Mar. 3, 2020

.NET Core 2.2 Dec. 4, 2018 Dec. 23, 2019

.NET Core 2.1 May 30, 2018 Aug. 21, 2021

.NET Core 2.0 Aug. 14, 2017 Oct. 1, 2018

.NET Core 1.1 Nov. 16, 2016 June 27, 2019

.NET Core 1.0 June 27, 2016 June 27, 2019

When we talk about long-term support (LTS) and standard-term support (STS), we are referring
to two very distinct release cadences. The cadences are defined as follows:

• Long-term support: Supported for three years after initial release.
• Standard-term support: Supported for 18 months after initial release.

You will notice that odd-numbered releases are STS releases, and even-numbered releases are
LTS releases. Therefore, you can also say that:

Figure 6: Cheeky Bit of Code

In all seriousness, the release cadence enables developers and businesses to plan ahead when
it comes to their development roadmaps. To qualify for support, you need to install the latest
patch update. This means that if you are running .NET 6, you must ensure that .NET 6.0.x is
installed as a first step.

It is worth noting the following servicing policies, which are the same for LTS and STS releases.

 15

Preview

Preview releases are usually offered to developers for testing. This is done ahead of the final
release, but they are not supported by Microsoft.

Go-live

These releases are supported by Microsoft in production. Go-live releases are release
candidate builds and are usually released just before the generally available (GA) releases.

Active support

During this support period, updates are provided to improve functionality and mitigate any
security vulnerabilities. When it comes to functional improvements, these could typically include
fixes to resolve reported crashes, performance issues, bugs, and adding support for new
hardware platforms or operating system versions.

Maintenance support

At this stage, .NET releases are only updated to mitigate security vulnerabilities. The last six
months of any release (LTS and STS) are considered the maintenance support period. Once
the maintenance support period is over, the release is considered out of support.

End of life

When a release reaches end of life, Microsoft no longer provides fixes or updates for the
release. If you use .NET versions that have reached end of life, your software and your data are
at risk.

What’s changed in .NET 8

.NET 8 will be supported for three years due to its long-term support release.

 Note: You can download .NET 8 here.

This makes it worth your while to upgrade now. If you need a little more convincing, consider the
following changes and improvements.

https://dotnet.microsoft.com/en-us/download/dotnet

 16

The .NET runtime

There have been many improvements made to performance (reminiscent of the .NET 7
release), garbage collection, and the core and extension libraries. I want to highlight just a few
of them.

Garbage collection

The .NET 8 release includes the capability to adjust the memory limit on the fly. In cloud-service
scenarios, demand can sometimes increase suddenly and then drop back down again. The cost
effectiveness of these services is measured in how well they can scale up and down the
resource consumption to meet the fluctuations on demand.

I would argue that scaling down is as important as scaling up as demand fluctuates. This means
that when a decrease in demand is detected, a resource can scale down its consumption by
reducing its memory limit.

Before .NET 8, however, this scaling down would fail because the garbage collector was not
aware of any changes and might allocate more memory than the new limit. By calling
GC.RefreshMemoryLimit(), you can update the garbage collection to the new limit.

There are, however, some limitations of which to take note:

• On 32-bit platforms, a new heap hard limit can’t be established by .NET if there isn’t
already one.

• The GC.RefreshMemoryLimit() call might fail and return a non-zero status code.
This happens because the scale-down is considered too aggressive and does not leave
enough memory for the garbage collection to work with. In this case, calling
GC.Collect(2, GCCollectionMode.Aggressive) might solve the issue by
shrinking the current memory usage, allowing you to call GC.RefreshMemoryLimit()
again.

• Scaling up the memory limit beyond what the garbage collector believes the startup
process can handle allows the GC.RefreshMemoryLimit() to succeed, but it will not
use more memory than what the garbage collector perceives as the limit.

The following code in Code Listing 1 illustrates setting the heap hard limit to 100 MiB
(mebibytes).

Code Listing 1: Setting the Heap Hard Limit

internal class Program

{

 static void Main(string[] args)

 {

 AppContext.SetData("GCHeapHardLimit", (ulong)100 * 1024 * 1024);

 GC.RefreshMemoryLimit();

 }

}

 17

If this hard limit is invalid, the GC.RefreshMemoryLimit() will throw an

InvalidOperationException. An invalid hard limit can be, for example, when the hard limit

that will be set by the refresh is lower than what’s already committed.

Core .NET libraries

There are many improvements and additions in the core .NET libraries. Some of these
improvements were made to the following features.

Serialization

A few serialization and deserialization improvements have been made to System.Text.Json in

.NET 8. I will not discuss all of them, but here are some of the more interesting improvements
and additions.

Handling missing members

One of the features that I am quite excited about is the ability to handle missing members during
deserialization.

Usually, if you receive a JSON payload, you deserialize this into a POCO (plain old CLR object).
If your JSON payload contains properties that are missing in your POCO when you deserialize
the JSON, they are just ignored.

.NET 8 allows you to specify that all members must exist in the payload; otherwise, a
JsonException will be thrown. Consider Code Listing 2.

Code Listing 2: Deserializing POCO with Missing Property

internal class Program

{

 static void Main(string[] args)

 {

 var pers = JsonSerializer.Deserialize<Person>("""{"Name": "John"

,"Age": 44, "YearOfBirth" : 1980 }""");

 Console.WriteLine(pers?.Name);

 Console.ReadLine();

 }

}

public class Person

{

 public string Name { get; set; }

 public int Age { get; set; }

}

 18

Here, we are deserializing a JSON payload that includes a value for YearOfBirth that the

Person POCO does not contain.

Figure 7: Deserialization Results of Person

After deserialization, we can see that the Person class only contains values for Age and Name,

because these are the only properties it contained. But our payload contained an additional
value for YearOfBirth, which was just ignored.

Now consider Code Listing 3.

Code Listing 3: Annotating the POCO

internal class Program

{

 static void Main(string[] args)

 {

 try

 {

 var pers = JsonSerializer.Deserialize<Person>("""{"Name":

"John" ,"Age": 30, "YearOfBirth" : 1980 }""");

 Console.WriteLine(pers?.Name);

 }

 catch (JsonException ex)

 {

 Console.WriteLine(ex.Message);

 }

 Console.ReadLine();

 }

}

[JsonUnmappedMemberHandling(JsonUnmappedMemberHandling.Disallow)]

public class Person

{

 public string Name { get; set; }

 public int Age { get; set; }

}

Notice that I have added the JsonUnmappedMemberHandling attribute and specified that it

should be disallowed.

 19

Figure 8: JsonUnmappedMemberHandling Result

If we run the CodeSamples console application a second time, the JsonException will be

thrown and handled by the try catch, as seen in Code Listing 3.

The other option is to set the attribute to JsonUnmappedMemberHandling.Skip, but this is the

default behavior anyway, so it wouldn’t make much sense to add it (unless you want to be
explicit in your code).

Naming policies

I don’t think I can love a feature more than I love this feature: new naming policies for the
JsonNamingPolicy class. These are (I kid you not) snake_case and kebab-case property

name conversions. Consider the code in Code Listing 4.

Code Listing 4: JSON Naming Policies

internal class Program

{

 static void Main(string[] args)

 {

 Student student = new()

 {

 Name = "Wile E. Coyote",

 Age = 74,

 SchoolName = "Acme Code School",

 SchoolAddress = "1234 Desert Road, Arizona"

 };

 var options = new JsonSerializerOptions

 {

 PropertyNamingPolicy = JsonNamingPolicy.KebabCaseLower,

 };

 20

 string json = JsonSerializer.Serialize(student, options);

 }

}

public class Student : Person

{

 public required string SchoolName { get; set; }

 public required string SchoolAddress { get; set; }

}

[JsonUnmappedMemberHandling(JsonUnmappedMemberHandling.Disallow)]

public class Person

{

 public string Name { get; set; }

 public int Age { get; set; }

}

You will notice that we specify KebabCaseLower in the JsonSerializerOptions. Running the

code and inspecting the resultant JSON, you will see that SchoolName and SchoolAddress

have been kebab-cased, as seen in Figure 9.

Figure 9: Kebab Case

Go ahead and change the JsonNamingPolicy from KebabCaseLower to SnakeCaseLower and

run the code again.

 21

Figure 10: Snake Case

You will see that snake casing has been applied to SchoolName and SchoolAddress. The

following naming policies are available for the JsonNamingPolicy class:

• CamelCase
• KebabCaseLower
• KebabCaseUpper
• SnakeCaseLower
• SnakeCaseUpper

I love the flexibility that this offers developers when deciding on a JSON naming policy.

Read-only properties

Deserializing into read-only properties is now possible. Consider the code in Code Listing 5. I
have a StockItem class with a read-only property for Pricing. The property defaults to 15

percent and a Quantity of 1.

Code Listing 5: Deserializing into Read-Only Properties in .NET 7

internal class Program

{

 static void Main(string[] args)

 {

 StockItem? stockItem = JsonSerializer.Deserialize<StockItem>("""

 {"StockCode": "1234", "Pricing":{"MarkupPercentage": 17,

"Quantity": 7} }

 """);

 var json = JsonSerializer.Serialize(stockItem);

 }

 22

}

public class StockItem

{

 public required string StockCode { get; set; }

 public PricingData Pricing { get; } = new()

 {

 MarkupPercentage = 15,

 Quantity = 1

 };

}

public class PricingData

{

 public required int MarkupPercentage { get; set; }

 public required int Quantity { get; set; }

}

Running the code using .NET 7, the JSON payload deserialized into the StockItem class

specifies a MarkupPercentage of 17 percent and a Quantity of 7.

Figure 11: Results from Setting Read-Only Properties in .NET 7

Looking at the results in Figure 11, you will notice that the deserialized JSON produces a
StockItem object that ignored the 17 percent and Quantity of 7 set in the JSON. In .NET 8,

however, we can tell it to populate the read-only property MarkupPercentage by setting the

JsonObjectCreationHandling attribute to Populate, as seen in Code Listing 6.

Code Listing 6: Modifying the StockItem Class

[JsonObjectCreationHandling(JsonObjectCreationHandling.Populate)]

public class StockItem

{

 public required string StockCode { get; set; }

 public PricingData Pricing { get; } = new()

 {

 23

 MarkupPercentage = 15,

 Quantity = 1

 };

}

Go ahead and run the code again and take a look at the stockItem variable, as seen in Figure

12.

Figure 12: The Read-Only Properties Have Been Set

Looking at the variable, you will notice that the MarkupPercentage and Quantity values have

been set to what was contained in the JSON payload. I have to admit that I am not sure whether
I like this behavior.

You can read more about populating initialized properties here.

Time abstraction

With .NET 8, we get a new time provider class, System.TimeProvider, and an ITimer

interface, System.Threading.ITimer. Let’s see how to use them and how to test time-

dependent code. I have a service called TaskRunnerService that simply returns the duration of

the elapsed time, as seen in Code Listing 7.

Code Listing 7: The TaskRunnerService Class

public class TaskRunnerService

{

 private readonly TimeProvider _timeProvider;

 public TaskRunnerService(TimeProvider timeProvider) => _timeProvider

= timeProvider;

 public TimeSpan MorningTaskRunner()

 {

 var startTime = _timeProvider.GetTimestamp();

 Task.Delay(5000).Wait();

 var endTime = _timeProvider.GetTimestamp();

 var duration = _timeProvider.GetElapsedTime(startTime, endTime);

https://learn.microsoft.com/en-us/dotnet/standard/serialization/system-text-json/populate-properties

 24

 return duration;

 }

}

Next, I have a service called TimeService that checks to see if the current time is in the

morning, as seen in Code Listing 8.

Code Listing 8: The TimeService Class

public class TimeService

{

 private readonly TimeProvider _timeProvider;

 public TimeService(TimeProvider timeProvider) => _timeProvider =

timeProvider;

 public bool RunMorningTasks()

 {

 var currentTime = _timeProvider.GetLocalNow();

 return currentTime.Hour <= 11;

 }

}

I then created an API that checks if the current time is in the morning, and if so, it runs the
TaskRunnerService. To use these services, I need to add them to the Program class of the

API, as seen in Code Listing 9. I also want to use the new TimeProvider class, so I need to

add this service, too.

Code Listing 9: The Program Class

public class Program

{

 public static void Main(string[] args)

 {

 var builder = WebApplication.CreateBuilder(args);

 // Add services to the container.

 builder.Services.AddSingleton(TimeProvider.System);

 builder.Services.AddSingleton<TimeService>();

 builder.Services.AddSingleton<TaskRunnerService>();

 builder.Services.AddControllers();

 builder.Services.AddEndpointsApiExplorer();

 25

 builder.Services.AddSwaggerGen();

 var app = builder.Build();

 // Configure the HTTP request pipeline.

 if (app.Environment.IsDevelopment())

 {

 app.UseSwagger();

 app.UseSwaggerUI();

 }

 app.UseHttpsRedirection();

 app.UseAuthorization();

 app.MapControllers();

 app.Run();

 }

}

My TimeController contains the GET endpoint RunMorningTasks that does all the work. You

will see this code in Code Listing 10. First, the API checks to see if it is morning, and if so, runs
the TaskRunnerService.

Code Listing 10: The RunMorningTasks API

[ApiController]

[Route("api/[action]")]

public class TimeController : Controller

{

 private readonly TimeService _timeService;

 private readonly TaskRunnerService _taskRunnerService;

 public TimeController(TimeService timeService, TaskRunnerService

taskRunnerService)

 {

 _timeService = timeService;

 _taskRunnerService = taskRunnerService;

 }

 [HttpGet]

 [ActionName("RunMorningTasks")]

 public IActionResult Get()

 26

 {

 var isMorning = _timeService.RunMorningTasks();

 if(isMorning)

 {

 var duration = _taskRunnerService.MorningTaskRunner();

 return Ok($"Ran morning tasks - duration {duration}");

 }

 return Ok("Morning tasks not scheduled to run");

 }

}

Looking back to the code for the TaskRunnerService in Code Listing 7, you will notice that I

use the new TimeProvider class to get the duration of the running task.

 Note: Imagine replacing Task.Delay(5000).Wait() in Code Listing 7 with a long-
running task.

The TaskRunnerService uses GetTimeStamp, provided by the TimeProvider, to give you a

system-based, high-frequency time stamp designed for small time-interval measurements with
high accuracy.

Using TimeProvider also gives you access to GetElapsedTime, which calculates the

difference between the start and end times very precisely in a high-frequency scenario.

The reason for this high level of accuracy is because GetTimeStamp actually works with your

machine to return the exact time stamp. This is much more accurate than what the DateTime

class can provide.

Calling the API, as seen in Figure 13, will run the TaskRunnerService, because it is still

morning where I live.

 27

Figure 13: Calling RunMorningTasks API

Let us think about unit testing our TimeService. The TimeProvider class comes in handy

here, too. Consider the unit test seen in Code Listing 11. In it, I am able to override the
GetUtcNow method, as well as override the LocalTimeZone property. I kept the overridden

GetUtcNow method as is (using UtcNow), but you can supply hard-coded values instead of

specifying _utc.Year, _utc.Month, and so on.

What I did do, however, was override the LocalTimeZone property with a new time zone.

 28

Code Listing 11: The TimeProvider Unit Test

namespace CodeTests

{

 [TestClass]

 public class TimeServiceTest

 {

 public class TimeProviderMorning : TimeProvider

 {

 private readonly DateTimeOffset _utc;

 public TimeProviderMorning() => _utc = DateTimeOffset.UtcNow;

 public override DateTimeOffset GetUtcNow() => new(_utc.Year,

_utc.Month, _utc.Day, _utc.Hour, _utc.Minute, _utc.Second,

TimeSpan.Zero);

 public override TimeZoneInfo LocalTimeZone =>

TimeZoneInfo.FindSystemTimeZoneById("Pacific Standard Time");

 }

 [TestMethod]

 public void CanMorningServiceRun()

 {

 var timeProviderMorning = new TimeProviderMorning();

 var timeService = new TimeService(timeProviderMorning);

 var canRunMorningTasks = timeService.RunMorningTasks();

 Assert.IsTrue(canRunMorningTasks);

 }

 }

}

Setting the time zone to PST will return true when running the test, as seen in Figure 14. It is

currently very early morning in Los Angeles.

 29

Figure 14: Passing Test with PST

Changing the time zone to CST paints a different picture when it comes to our unit test. Modify
the TimeProviderMorning class, as seen in Code Listing 12, by specifying the time zone as

China Standard Time.

Code Listing 12: Modified TimeProviderMorning Class

public class TimeProviderMorning : TimeProvider

{

 private readonly DateTimeOffset _utc;

 public TimeProviderMorning() => _utc = DateTimeOffset.UtcNow;

 public override DateTimeOffset GetUtcNow() => new(_utc.Year,

_utc.Month, _utc.Day, _utc.Hour, _utc.Minute, _utc.Second,

TimeSpan.Zero);

 public override TimeZoneInfo LocalTimeZone =>

TimeZoneInfo.FindSystemTimeZoneById("China Standard Time");

}

Running the unit test again results in a failed test, as seen in Figure 15.

 30

Figure 15: Failing Test Results

In fact, if you debug the unit test and placed a break point on the return statement, you will see
that the current time is UTC+08:00, which is China Standard Time.

Figure 16: Debugging the RunMorningTasks Method

It’s always a challenge to handle date and time in software development, especially when
dealing with multiple time zones. Sprinkle a little bit of daylight savings time in this mix, and you
have a tough cookie to chew on.

Using the new TimeProvider class isn’t a magic bullet. It is, however, a welcome new feature

to .NET, helping developers deal with time- and date-dependent code, especially when using
unit tests.

Randomness

With the release of .NET 8, Microsoft introduced two brand-new methods on the Random class

that are extremely fast and memory-efficient. First, let’s have a look at the Shuffle method. As

seen in Code Listing 13, we are passing an array of strings to the Shuffle method of the

Random class.

Code Listing 13: The Shuffle Method

var cities = new[]

{

 "Raleigh", "Tampa", "Los Angeles", "New York", "Chicago"

};

 31

Random.Shared.Shuffle(cities);

foreach (var c in cities)

{

 Console.WriteLine(c);

}

As can be expected, this will shuffle the cities in the array and output them in a random order.
Taking a peek at the Shuffle method, you will notice the following, as seen in Code Listing 14.

Code Listing 14: Peeking Inside the Shuffle Method

public void Shuffle<T>(T[] values)

{

 ArgumentNullException.ThrowIfNull(values);

 Shuffle(values.AsSpan());

}

public void Shuffle<T>(Span<T> values)

{

 int n = values.Length;

 for (int i = 0; i < n - 1; i++)

 {

 int j = Next(i, n);

 if (j != i)

 {

 T temp = values[i];

 values[i] = values[j];

 values[j] = temp;

 }

 }

}

The Shuffle method accepts an array or a Span. If you pass it an array, it will be changed to a

Span anyway, before being shuffled. This makes it extremely efficient, as it performs an in-place

shuffle of the respective data structures, instead of returning a new array or Span.

Therefore, keep this in mind if you have created code that shuffles large arrays, as this might
give you a performance boost.

 32

The second new method we will look at is the GetItems method. Take a look at the code in

Code Listing 15. Here, we are telling .NET to use our cities array and return to us a random

array of length 10, containing the city names in our cities array.

Code Listing 15: Using GetItems

var cities = new[]

{

 "Raleigh", "Tampa", "Los Angeles", "New York", "Chicago"

};

var generatedCities = Random.Shared.GetItems<string>(cities, 10);

foreach (var c in generatedCities)

{

 Console.WriteLine(c);

}

Running the code in Code Listing 15 results in the output seen in Figure 17.

Figure 17: The GetItems Result

The GetItems method does not create any new city names but merely returns to us an array

with the names in our cities array.

This feature might not be useful for most applications, but it can be very useful in specialized
systems, such as those in machine learning.

Lastly, I want to have a look at the RandomNumberGenerator class. You will notice that this

class also gets the Shuffle and GetItems methods and does the same thing as the Random

class, but with cryptographically secure randomness.

 33

More interestingly, the RandomNumberGenerator class has two new methods, called

GetHexString and GetString, as seen in Code Listing 16.

The GetHexString method will randomly generate a cryptographically secure string of 25

characters in length, which you can use to create unpredictable IDs (for example).

The GetString method accepts a string of characters and a length and returns a

cryptographically secure random string of characters (based on the characters you provided as
parameter) of the length you specified.

Code Listing 16: The RandomNumberGenerator Class

var hexStr = RandomNumberGenerator.GetHexString(25);

// 9CDCD0C99A7E471DE5F4D2E0F

var genString =

RandomNumberGenerator.GetString("bcdefgBCDEFG0123456789=><!@#$%^*()-+&",

15);

// G#7cg-g9g5g=b16

A word of caution, though: while this can be very useful in many areas of your code, do not rely
solely on this for generating passwords. While the returned random string is generated in a
cryptographically secure manner, it is very easy to generate a weak password. This is especially
true if the length you provide is small, and the characters you provide do not strike a nice
balance among lowercase, uppercase, and special characters.

Performance-focused types

As with .NET 7, Microsoft has focused on performance with the release of .NET 8. There are
some nice improvements out of the box, as well as some new types that you can use in your
code. A little later on, we will look at benchmarking some of this code. For now, let’s just have a
look at the new types.

FrozenSet and FrozenDictionary

In the .NET 8 System.Collections.Frozen namespace, we now have two new collection types:
FrozenDictionary<TKey, Tval> and FrozenSet<T>. Once created, you cannot make

changes to any keys or values. As you can imagine, this leads to faster read operations using
TryGetValue(), for example. With a long-lived service, types like these are really useful

because they are populated on first use and persisted for the service duration.

Code Listing 17: Using the FrozenSet

var lst = new List<string> { "John", "Mark", "Jane", "Jeremy", "Daton",

"Sally", "Mary" };

var frozenSet = lst.ToFrozenSet();

var willTheRealJeremyPleaseStandup = frozenSet.Contains("Jeremy");

 34

Taking a look at the ToFrozenSet method in Code Listing 17, for example, the code is not

particularly mind-blowing in and of itself. You will get what you expect here, which is a frozen set
containing the names of the people in the list provided.

What I do find interesting is what’s underneath. As mentioned before, this frozen set cannot be
modified. You can see this behavior if you look at a subset of the code contained in the
FrozenSet class, as seen in Figure 18. The FrozenSet class implements the ISet Interface.

Figure 18: The Unsupported ISet Implementations

The FrozenSet does not, however, support the methods of ISet that mutate data. Because

FrozenSet implements the ISet interface, and because ISet defines the number of methods a

set should have, the FrozenSet must provide an implementation for all the methods of ISet,

even the unsupported methods. Because the FrozenSet is designed to be immutable, it simply

throws a NotSupportedException in the implementation.

You can even test this by casting the instance of the FrozenSet to an ISet<string>, as seen

in Figure 19, and trying to add some data. Slim Shady will remain seated and hidden, because
trying to add to the set throws the exception.

 35

Figure 19: Mutating Will Throw an Exception

You might be wondering why the FrozenSet class even implements ISet if it doesn’t support

all the operations of a set. This is because ISet<T> also contains a number of useful methods

for querying a set, such as Contains. Therefore, FrozenSet implements ISet so that it can

provide implementations for these methods.

The FrozenDictionary works in exactly the same manner, as seen in Code Listing 18.

Code Listing 18: The FrozenDictionary

var dictionary = new Dictionary<string, int>

{

 { "John", 38 },

 { "Mark", 42 },

 { "Jane", 24 },

};

var frozenDictionary = dictionary.ToFrozenDictionary();

This time, the FrozenDictionary implements the IDictionary interface. Similarly, it needs to

add the implementations of the interface it implements and does so by throwing a
NotSupportedException for all the methods that would mutate the data.

 36

SearchValue<T>

.NET 8 now also includes a new SearchValues<T> type. Methods such as

MemoryExtensions.ContainsAny, which checks to see if a value is contained in a collection,

have been modified to add new overloads to accept an instance of this new type.

This means that you can now do what you see in Code Listing 19. I have created an instance of
SearchValues<char>, but you can also have an instance of SearchValues<byte>.

Code Listing 19: The New SearchValues Type

var strSear = @"<>:""/\|?*";

SearchValues<char> illegalChars = SearchValues.Create(strSear);

var fileName = @"Important_|_File.txt";

var illegal = fileName.AsSpan().ContainsAny(illegalChars);

// illegal = true

You might be wondering why this new type matters. Well, as it turns out, when you create an
instance of this type, everything that is required to optimize subsequent searches is derived.
Having all this work done up front means a performance boost for your code.

In fact, just have a look at the .NET Runtime repo on GitHub and search for the term
SearchValue. You will see that Microsoft is using the new SearchValue type quite a bit.

Figure 20: The .NET Runtime Using SearchValues

This means that your code will also get this performance improvement for free, just by
upgrading to .NET 8.

 37

Extension libraries

.NET 8 has also given some love to extension libraries. You might have heard about keyed
dependency injection (DI), where you use keys to register and read DI services. Secondly, the
IHostedLifecycleService has been extended to include additional methods to give you more

options for execution. The System.Numerics.Tensors NuGet package has also been updated

to include the new TensorPrimitives namespace. This adds support for tensor operations.

Tensor primitives optimize data-intensive workloads used in AI and machine learning.

Keyed DI services

As you know, the DI service is a way to register and retrieve services from the dependency
injection container. Now, with keyed dependency injection, you can do this using keys. This
allows you to register and inject multiple services of the same type using a unique key for each.
Some of the new APIs include the following:

• The interface IKeyedServiceProvider.
• The attribute ServiceKeyAttribute, used to inject the key used for

registration/resolution in the constructor.
• The attribute FromKeyedServicesAttribute, used to specify which keyed service to

use in the service constructor parameter.
• New extension methods for IServiceCollection to support keyed services.
• The ServiceProvider implementation of IKeyedServiceProvider.

The easiest way to illustrate keyed dependency injection is through the use of minimal APIs. I
admit that I haven’t found myself gravitating towards using minimal APIs on a regular basis, but
for this explanation, they’re perfect.

 Note: I have included the minimal API code illustrated here in the project
KeyedDemoMinimal, but I have also added this code to an API project called
KeyedDemo that uses controllers. You can find all this code in the GitHub repository
that comes with this book.

The code in Figure 20 illustrates the use of keyed DI services. It might make a little more sense
when viewed in a code editor, as the code is a little bit squished on the page. If you prefer using
controllers instead, there is sample code for that, too.

The code contains an interface called IGreeter that is used to provide the contract for two

services, FormalGreeterService and InformalGreeterService. I then have two other

services, called CustomerService and FriendsService.

Adding the services to the DI container is done in the usual manner for the Customer and

FriendsService, but for the FormalGreeterService and InformalGreeterService, I

provide each with a key.

These keys allow me to reference each service uniquely and provide API endpoints that make
use of the key to provide the appropriate service. You can see this in the
api/GreetFriendSpecific and api/GreetCustomerSpecific endpoints.

https://github.com/SyncfusionSuccinctlyE-Books/.NET-8-and-CSharp-12-Succinctly

 38

Code Listing 20: The Keyed DI Minimal API

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

builder.Services.AddKeyedSingleton<IGreeter,

FormalGreeterService>("customers");

builder.Services.AddKeyedSingleton<IGreeter,

InformalGreeterService>("friends");

builder.Services.AddSingleton<CustomerService>();

builder.Services.AddSingleton<FriendsService>();

var app = builder.Build();

// Configure the HTTP request pipeline.

if (app.Environment.IsDevelopment())

{

 app.UseSwagger();

 app.UseSwaggerUI();

}

app.UseHttpsRedirection();

app.MapGet("api/GreetCustomer", (CustomerService customer) =>

customer.Greet());

app.MapGet("api/GreetFriend", (FriendsService friend) => friend.Greet());

app.MapGet("api/GreetFriendSpecific",

 ([FromKeyedServices("friends")] IGreeter greet, string friendName) =>

 greet.Greeting($"Hey {friendName}. Nice to see you."));

app.MapGet("api/GreetCustomerSpecific",

 (HttpContext httpContext, string customerName) =>

 httpContext.RequestServices

 .GetRequiredKeyedService<IGreeter>("customers")

 .Greeting($"Good day {customerName}. How many I assist you?"));

app.Run();

public class CustomerService([FromKeyedServices("customers")] IGreeter

greeter)

 39

{

 public string Greet() => greeter.Greeting("Good day, can I be of

service?");

}

public class FriendsService(IServiceProvider serviceProvider)

{

 public string Greet() =>

serviceProvider.GetRequiredKeyedService<IGreeter>("friends").Greeting("Hell

o buddy!");

}

public interface IGreeter

{

 string Greeting(string message);

}

public class FormalGreeterService : IGreeter

{

 public string Greeting(string message) => $"Formal greeting:

{message}";

}

public class InformalGreeterService : IGreeter

{

 public string Greeting(string message) => $"Informal greeting:

{message}";

}

But hold on a minute—didn’t I say that keyed DI allows you to register and inject multiple
services of the same type using a unique key for each? Well, yes, I did, and you can do this by
adding the keyed services seen in Code Listing 21 to your DI container.

Code Listing 21: Adding Keyed Services of the Same Type

builder.Services.AddKeyedSingleton<IGreeter, FormalGreeterService>("ceo");

builder.Services.AddKeyedSingleton<IGreeter, FormalGreeterService>("cto");

I am giving the service a different key: one for CEO, and one for CTO. Now I can go ahead and
add the following API endpoints, as illustrated in Code Listing 22.

 40

Code Listing 22: API Endpoints

app.MapGet("api/GreetCEO",

 ([FromKeyedServices("ceo")] IGreeter greet) =>

 greet.Greeting($"Good day Mr CEO. How many I assist you?"));

app.MapGet("api/GreetCTO",

 ([FromKeyedServices("cto")] IGreeter greet) =>

 greet.Greeting($"Good day Mr CTO. How many I assist you?"));

I can now call the services by using their keys. While the implementation of the services does
not differ, the idea is that you can register the exact same service with different keys and still
have valid code.

Options validation

Validating your application settings is a very useful feature in .NET. In fact, being able to check
that settings are within specific ranges, of a specific value or enum, allows for explicit control
over the settings that your application needs to perform optimally. Before .NET 8, this options
validation used reflection. This kind of reflection on application startup will generally cause your
application to start slower.

With the release of .NET 8, Microsoft gave us a brand-new source generator that will generate
code upfront to perform this validation.

 Note: While the validation code is generated at compile time, it is worth noting
that the actual validation still happens at runtime.

Therefore, instead of using reflection, it uses the generated validation code, which is optimized
by Microsoft’s source generators. You can be sure that they spent a lot of time creating
generators that will generate the most optimized and high-performance code possible. Let’s
have a look at a concrete example of how this would work.

Looking at Code Listing 23, I have an appsettings.json file that has a section called
ApiOptions. These are the settings that I want to validate.

Code Listing 23: The appsettings.json File

{

 "ApiOptions": {

 "NotificationType": "Email",

 "NotificationEmailAddress": "noreply@acme.com",

 "Attempts": 2

 },

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 41

 "Microsoft.AspNetCore": "Warning"

 }

 },

 "AllowedHosts": "*"

}

I then created a class called ApiConfigOptions, which you can see in Code Listing 24. This

class contains properties for each setting. You will notice that at the end of the class, I have
added another partial class called ApiConfigOptionsValidation, which implements

IValidateOptions<ApiConfigOptions> without implementing a Validate method.

Code Listing 24: The Validation Class

using System.ComponentModel.DataAnnotations;

using Microsoft.Extensions.Options;

namespace OptionsValidatorDemo

{

 enum NotificationType

 {

 Email,

 Sms,

 Push

 }

 public class ApiConfigOptions

 {

 public const string SectionName = "ApiOptions";

 [EnumDataType(typeof(NotificationType)

 , ErrorMessage = "Invalid notification type defined.")]

 public required string NotificationType { get; init; }

 [Required]

 [RegularExpression(@"^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-

Z]{2,}$"

 , ErrorMessage = "Invalid notification email address

defined")]

 public required string NotificationEmailAddress { get; init; }

 [Required]

 [Range(1, 3

 42

 , ErrorMessage = "The value for Attempts is outside the valid

range.")]

 public required int Attempts { get; init; }

 }

 [OptionsValidator]

 public partial class ApiConfigOptionsValidator :

IValidateOptions<ApiConfigOptions>

 {

 }

}

I didn’t have to implement a Validate method because I decorated the partial class with an

[OptionsValidator] attribute. Placing your mouse on the ApiConfigOptionsValidator

class and hitting F12 will allow you to navigate to a file called Validators.g.cs, where you can
see the generated code. It will not make much sense to illustrate the generated code here in a
code block, but I want to highlight some areas of this generated code with some images from
the file.

Figure 21: Generated Validation Code Comments

You can see from Figure 21 that Microsoft is explicitly stating that the ValidationContext is

used in such a way as to never call reflection. Do yourself a favor and take a look at the
generated code. It’s fascinating to see what was generated, and how this changes as you add
more properties to the ApiConfigOptions class.

Lastly, we want to validate the settings and call the API endpoint. In the Program.cs file, you can
see that I have registered a configuration instance for the ApiConfigOptions class. I have also

added the IValidateOptions service to the DI container as a singleton.

With this in place, I can add the code to access the options object and set it to a variable called
settingOptions. It is at this point that your code will execute the generated code to perform

options validation.

 43

Code Listing 25: Validating and Calling the API

using Microsoft.Extensions.Options;

using OptionsValidatorDemo;

var builder = WebApplication.CreateBuilder(args);

var cfg = builder.Configuration;

// Add services to the container.

builder.Services

 .Configure<ApiConfigOptions>(cfg.GetSection(ApiConfigOptions.SectionNam

e));

builder.Services

 .AddSingleton<IValidateOptions<ApiConfigOptions>,

ApiConfigOptionsValidator>();

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

var app = builder.Build();

// Configure the HTTP request pipeline.

if (app.Environment.IsDevelopment())

{

 app.UseSwagger();

 app.UseSwaggerUI();

}

app.UseHttpsRedirection();

var settingOptions =

app.Services.GetRequiredService<IOptions<ApiConfigOptions>>().Value;

app.MapGet("api/sendnotification", () =>

{

 var notificationType = settingOptions.NotificationType;

 return Enum.TryParse<NotificationType>(notificationType, out var type)

 ? type switch

 {

 NotificationType.Email => "Sending email notification",

 NotificationType.Sms => "Sending sms notification",

 NotificationType.Push => "Sending push notification",

 _ => "Invalid notification type",

 }

 44

 : "Notification not sent due to undefined notification type";

})

.WithName("SendNotification")

.WithDescription("Send notification to the user")

.WithOpenApi();

app.Run();

If any of the setting values in the appsettings.json file are incorrect according to the constraints
set in the validator class, you will see an exception. Compare Code Listing 23 to Code Listing
26. You will notice that I have modified the value for Attempts to a value beyond the allowed

range set on the Attempts property in the ApiConfigOptions class.

Code Listing 26: The Modified Settings

{

 "ApiOptions": {

 "NotificationType": "Email",

 "NotificationEmailAddress": "noreply@acme.com",

 "Attempts": 20

 },

 "Logging": {

 "LogLevel": {

 "Default": "Information",

 "Microsoft.AspNetCore": "Warning"

 }

 },

 "AllowedHosts": "*"

}

Run your API and have a look at the result. The validation kicks in, and the error message
informs you that the value specified for this property is not valid.

If, however, you opt to inject your IOptions object on your API endpoints, you will not get an

error when the application starts, but rather on the API call. A good suggestion would be to
create a health check endpoint to validate your settings.

Code Listing 27 illustrates how you might achieve this. A way to validate your settings is, more
often than not, a good idea. This is especially true if you have production code that needs a
quick and easy way to check that the basics are still correct after a deployment. Sometimes the
fog of war tends to allow mistakes to slip in, and a way to validate that your API is still healthy
quickly is to include some sort of check.

Code Listing 27: Adding a Settings Validation Endpoint

using System.Text.Json;

 45

using Microsoft.Extensions.Options;

using OptionsValidatorDemo;

var builder = WebApplication.CreateBuilder(args);

var cfg = builder.Configuration;

// Add services to the container.

builder.Services

 .Configure<ApiConfigOptions>(cfg.GetSection(ApiConfigOptions.SectionNam

e));

builder.Services

 .AddSingleton<IValidateOptions<ApiConfigOptions>,

ApiConfigOptionsValidator>();

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

var app = builder.Build();

// Configure the HTTP request pipeline.

if (app.Environment.IsDevelopment())

{

 app.UseSwagger();

 app.UseSwaggerUI();

}

app.UseHttpsRedirection();

app.MapGet("api/sendnotification", (IOptions<ApiConfigOptions> opt) =>

{

 var notificationType = opt.Value.NotificationType;

 return Enum.TryParse<NotificationType>(notificationType, out var type)

 ? type switch

 {

 NotificationType.Email => "Sending email notification",

 NotificationType.Sms => "Sending sms notification",

 NotificationType.Push => "Sending push notification",

 _ => "Invalid notification type",

 }

 : "Notification not sent due to undefined notification type";

})

.WithName("SendNotification")

.WithDescription("Send notification to the user")

.WithOpenApi();

 46

// Validate settings.

app.MapGet("api/validatesettings", (IOptions<ApiConfigOptions> opt) =>

{

 var options = new JsonSerializerOptions { WriteIndented = true };

 try

 {

 return JsonSerializer.Serialize(new { status = "OK", settings =

opt.Value }, options);

 }

 catch (Exception ex)

 {

 return JsonSerializer.Serialize(new { status = "ERROR", error =

ex.Message }, options);

 }

})

.WithName("ValidateSettings")

.WithDescription("Perform a Check On The App Settings")

.WithOpenApi();

app.Run();

I have digressed a bit on the options validation feature in .NET 8. However you decide to
implement options validation, .NET 8 allows your code to do this in a more flexible, manageable,
and high-performance manner than the previous reflected code in previous .NET versions.

LoggerMessageAttribute constructors

When it comes to logging, the LoggerMessageAttribute offers additional overloads on its

constructor. In previous versions of .NET, you had to take an all-or-nothing approach. Either you
had to use the parameterless constructor, or you had to choose to supply all the required
parameters for event ID, log level, and message.

Code Listing 28: LoggerMessageAttribute Constructor Overloads

public LoggerMessageAttribute(LogLevel level, string message);

public LoggerMessageAttribute(LogLevel level);

public LoggerMessageAttribute(string message);

As seen in Code Listing 28, developers have more options when specifying the required
parameters due to these overloads. If you don’t, for example, specify an event ID, one will be
automatically generated.

 47

C# 12

Most excitingly of all, C# 12 shipped with .NET 8. The following new features were included in
C#12:

• Primary constructors
• Collection expressions
• Ref readonly parameters
• Default lambda parameters
• Alias any type
• Inline arrays
• Experimental attribute
• Interceptors

We will have a closer look at these in the next chapter.

.NET Aspire

You might have heard about .NET Aspire if you watched any of the dotnet conf or Build content
online. .NET Aspire is available by including a collection of NuGet packages that handle specific
cloud-native concerns. Currently in preview, it is available with .NET 8. Microsoft describes
.NET Aspire as an “opinionated” (which makes no sense to me, so I prefer “highly directive”),
cloud-ready stack for building observable, production-ready, distributed applications.

Simply put, if you are creating distributed applications, .NET Aspire will solve a lot of your pain
points. The main problem with many small distributed applications is that we want to have them
all talk to each other, both locally in the dev environment and when we deploy them. This is
what .NET Aspire aims to solve.

This book is too short to go into an in-depth explanation of .NET Aspire, which deserves a book
on its own. If you want to learn more about .NET Aspire, head over to the .NET Aspire
documentation.

In conclusion

This chapter introduced us to some of the goodies in .NET 8, and there is a lot that I have left
out. There is ASP.NET Core with improvements to Blazor, SignalR, minimal APIs, Native AOT,
Kestrel, authentication, and authorization. There is .NET MAUI, which includes new functionality
for controls as well as performance enhancements. EF Core made improvements to complex
type objects, collections of primitive types, raw SQL queries, tracked-entity access, and much
more. Windows Forms got some love, too, as well as Windows Presentation Foundation, which
now has the ability to use hardware acceleration and also has a new OpenFolderDialog

control.

Buckle up and hold on to your seat, as this train is just gaining traction. Next up, we will have a
look at C# 12 and all the new features introduced.

https://learn.microsoft.com/en-us/dotnet/aspire/
https://learn.microsoft.com/en-us/dotnet/aspire/

 48

Chapter 2 A Closer Look at C# 12

C# 12 has brought with it a host of new features. With the pace at which C# is progressing, it
remains a challenge for developers to stay up to date. The new features of C# 12 include:

• Primary constructors
• Collection expressions
• Ref readonly parameters
• Default Lambda parameters
• Alias any type
• Inline arrays
• Experimental attribute
• Interceptors

While developers might feel the pressure of staying up to date with everything that is new with
every release of .NET and C#, I have come to a different conclusion. Instead of seeing it as a
five-course meal that needs to be worked through in a single sitting, I am approaching all these
new features in each new release like a buffet table.

A smorgasbord of C# and .NET features presented as a grand spread, meticulously prepared
by Microsoft to satisfy the eclectic tastes of the most discerning code connoisseurs.

“Yes, thank you very much,” I murmur as I slowly pace along the buffet with my dinner plate,
perusing all that is on display.

As I saunter along the buffet table (taking care not to walk too fast), my plate ready for the
taking, I whisper to myself: “A little bit of record structs, a dash of global using directives, a slice
of file-scoped namespaces, topped with some file-scoped types… Oohh, primary constructors
and collection expressions, haven’t tried you before!”

I carefully scoop just enough onto my plate of each so that I don’t look greedy. You see, the trick
to navigating any buffet table is to put something on your plate, but also to pop something
surreptitiously into your mouth (from your plate, not directly from the table) while standing at the
table. This way, you get to taste more while only returning to your table with a modest plate of
food. The same can be said for the flurry of new features with every release of .NET.

You don’t have to learn to implement every new feature in every release of .NET in every
project you create. What you do have to do, however, is peruse the buffet table. You must walk
up to it, pick something up here, nibble something there, and return to your table with a
manageable plate of food. While this metaphor does well to illustrate how I can grow my skills
as a developer, and when life imitates art, grow my waistline as a buffet table peruser, it does
not account for the challenges developers face in the real world. Trying to grow as a developer
while managing a healthy work-life balance is challenging when you try to do it all at once. But it
starts with showing up and taking little (pun intended), bite-sized nibbles.

As Carl Orff’s “O Fortuna” from Carmina Burana starts playing in our minds, the waiters, ready
with the champagne, join me as we walk up to the buffet table to see what’s on display.

 49

Primary constructors

I’m not convinced I like primary constructors. My mind isn’t yet made up. In fact, it feels like it
goes against my flow of writing code. Let me show you what I mean.

Code Listing 29 illustrates a weather service that generates totally random weather conditions
for random locations every time you call it.

Code Listing 29: The LyingWeatherController

using Microsoft.AspNetCore.Mvc;

using PrimaryConstructorsDemo.Services;

namespace PrimaryConstructorsDemo.Controllers;

[ApiController]

[Route("[controller]")]

public class LyingWeatherForecastController : ControllerBase

{

 private readonly IRandomCityService _randomCityService;

 private readonly IRandomSummaryService _randomSummaryService;

 public LyingWeatherForecastController(IRandomCityService

randomCityService, IRandomSummaryService randomSummaryService)

 {

 _randomCityService = randomCityService;

 _randomSummaryService = randomSummaryService;

 }

 [HttpGet(Name = "GetWeatherForecast")]

 public IEnumerable<WeatherForecast> Get()

 {

 return Enumerable.Range(1, 5).Select(index => new WeatherForecast

 {

 CityName = _randomCityService.GetRandomCity(),

 Date = DateOnly.FromDateTime(DateTime.Now.AddDays(index)),

 TemperatureC = Random.Shared.Next(-20, 55),

 Summary = _randomSummaryService.GetRandomSummary()

 })

 .ToArray();

 }

}

It happens to be correct about 1 percent of the time. Nevertheless, I like this method of creating
classes. I have a constructor, I inject some services, I set those to private fields, and I use the
services in my class. End of story.

 50

Let’s take a look at the same class using primary constructors. The parameters on the
constructor are moved up to the class level. Now I can remove my constructor totally, as well as
the private fields, and use the injected services in my code.

Code Listing 30: Using Primary Constructors

using Microsoft.AspNetCore.Mvc;

using PrimaryConstructorsDemo.Services;

namespace PrimaryConstructorsDemo.Controllers;

[ApiController]

[Route("[controller]")]

public class LyingWeatherForecastController(

 IRandomCityService randomCityService,

 IRandomSummaryService randomSummaryService) : ControllerBase

{

 [HttpGet(Name = "GetWeatherForecast")]

 public IEnumerable<WeatherForecast> Get()

 {

ntroller

I[cyService

.

 51

 public string GetSomeWeatherData()

 {

 var city = randomCityService.GetRandomCity();

 var summary = randomSummaryService.GetRandomSummary();

 return $"It is {summary} in {city}";

 }

}

Have a look what the lowered C# code looks like in Code Listing 32. Notice that the private
fields for IRandomCityService and IRandomSummaryService are not readonly.

Code Listing 32: The Lowered C# Code

public class LyingWeatherForecastController : IWidget

{

 [CompilerGenerated]

 [DebuggerBrowsable(DebuggerBrowsableState.Never)]

 private IRandomCityService <randomCityService>P;

 [CompilerGenerated]

 [DebuggerBrowsable(DebuggerBrowsableState.Never)]

 private IRandomSummaryService <randomSummaryService>P;

 public LyingWeatherForecastController(IRandomCityService

randomCityService, IRandomSummaryService randomSummaryService)

 {

 <randomCityService>P = randomCityService;

 <randomSummaryService>P = randomSummaryService;

 base..ctor();

 }

 public string GetSomeWeatherData()

 {

 string randomCity = <randomCityService>P.GetRandomCity();

 string randomSummary =

<randomSummaryService>P.GetRandomSummary();

 return string.Concat("It is ", randomSummary, " in ",

randomCity);

 }

}

It is, therefore, possible to change the value of these fields from inside the class—so watch out

 52

Collection expressions

I have to say that I do like collection expressions. In my opinion, it weeds out a little bit of the
unnecessary fluff. Of course, the argument can be made that it’s not as expressive, but here we
are. Let’s look at an example.

Code Listing 33: A Simple Array

int[] scores = new int[] { 97, 92, 81, 60 };

As seen in Code Listing 33, we have a stock standard array of integers. Visual Studio, however,
will suggest a quick action to use collection expressions, as seen in Figure 22.

Figure 22: Refactoring Quick Action

You can see the resulting code in Code Listing 34.

Code Listing 34: The Collection Expression

int[] scores = [97, 92, 81, 60];

Just also note that you can’t use var with collection expressions, as then there is no target type.

Collection expressions also apply to Span<T>, as seen in Code Listing 35.

Code Listing 35: Span Collection Expression

Span<int> foo = ['a', 'b', 'c'];

Collection expressions may appeal to some developers but not to others. With C# 12, you have
the option to use collection expressions if you choose to.

 53

Ref readonly parameters

Ref readonly parameters are now a thing in C# 12. Consider the code in Code Listing 36. This
simply passes a score to the Increment method of the Counter class and then prints out the

score.

Code Listing 36: Arbitrary Code Example

var score = 30;

var c = new Counter();

c.Increment(score);

Console.WriteLine($"The score is {score}");

public class Counter

{

 public void Increment(int score)

 {

 score++;

 }

}

As you would expect, the value of score remains unchanged. Why is this the case? Well, the

score parameter is passed by value. In other words, a copy of the variable is made, and the

method acts on this copy. Therefore, changes to this copy inside the method will not affect the
original variable.

 Tip: Value types are copied by default.

We can see this behavior when we inspect the call stack, as seen in Figure 23.

 54

Figure 23: Value of score Variable Inside Increment

When the code execution reaches the Increment method and increments the score

parameter, the value changes to 31. As seen in Figure 24, a whole different story is at play in

the calling code.

 55

Figure 24: Value of score Variable in Main

The score variable’s value in the calling code remains unchanged at 30. This is because, as

mentioned previously, the increment acted on a copy of this variable.

 56

In order to change this behavior, we can add the ref keyword to the parameter and the calling

code, as seen in Code Listing 37. This allows me to pass down the reference to the score
variable instead of the value of the score variable.

Code Listing 37: Arbitrary Code Example Using Ref readonly Parameters

var score = 30;

var c = new Counter();

c.Increment(ref score);

Console.WriteLine($"The score is {score}");

public class Counter

{

 public void Increment(ref int score)

 {

 score++;

 }

}

What does this do to our variable, you might wonder.

As soon as the variable is incremented, I am increasing the reference of the variable score, not

the value itself. This means that we will see this effect outside the Increment method in the

calling code.

 57

Figure 25: Value of score Variable Inside Increment

Figure 25 illustrates this point when looking at the call stack again. As soon as the score

parameter is incremented, the value increases to 31, as expected. The difference now, because

we used the ref keyword, is that the original variable in the calling code has also increased, as

seen in Figure 26.

 58

Figure 26: Value of score Variable in Main

With C# 12, however, you can add the readonly keyword, as seen in Figure 27.

 59

Figure 27: Using Ref readonly

Using the ref readonly keywords in the Increment method will result in a compilation error

telling you that the reference passed is read-only, and that you can’t change it. Now you might
be wondering, why not just use the in keyword, and why do we have ref readonly to begin

with?

Code Listing 38: Using the in Keyword

public void Increment(in int score)

{

 score++;

}

Code Listing 38 illustrates the use of the in keyword. Looking at Figure 28, you will see that this

also results in a compilation error.

 60

Figure 28: The Result Is the Same Compilation Error

So then, why add another feature to C# 12 that does the same thing introduced in C# 7.2 with
the in keyword?

 Note: You can read about the release of C# 7.2 here.

To explain the reason, we first need to understand the difference between an rvalue and an
lvalue.

Rvalue stands for right-hand side value and refers to the value that appears on the right side of
an assignment expression. In other words, it is a value that does not have a persistent memory
location.

Lvalue, on the other hand, stands for left-hand side and appears on the left-hand side of an
assignment expression. In other words, an lvalue typically represents a variable or object that
can be assigned a new value.

Looking at the expression int x = 27; and applying the definitions for an lvalue and an rvalue,

27 is an rvalue, while x is an lvalue.

To put it simply, using ref readonly offers additional guarantees by warning that an rvalue (in

other words, not a variable) is being passed. This enhances clarity and intent at the call site that
a reference is being captured.

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history#c-version-72

 61

Figure 29: Warning on rvalue

By introducing the ref readonly feature in C# 12, you can enforce this indication that a

reference is being captured, and that the argument passed is a temporary value instead of a
variable that exists beyond the method call (as seen in Figure 29).

Default lambda parameters

Before default lambda parameters, we had to invoke the lambda by specifying the value for
personToGreet, as seen in Code Listing 39.

Code Listing 39: Before Default Lambda Parameters

var greeting = (string personToGreet) => $"Hello, {personToGreet}!";

Console.WriteLine(greeting("John")); // Hello, John!

In C# 12, however, we can now set a default value for personToGreet, as seen in Code Listing

40.

Code Listing 40: Using Default Lambda Parameters

var greeting = (string personToGreet = "World") => $"Hello,

{personToGreet}!";

Console.WriteLine(greeting()); // Hello, World!

This is a small, but welcome change.

 62

Alias any type

In a nutshell, this feature is relaxing the rules on where the using alias directive can be used. In

other words, you can now create semantic aliases for tuple types, array types, and pointer types
where in the past, you could not. Previously, you could only alias named types, as seen in Code
Listing 41.

Code Listing 41: Using Alias on Named Types

using Employee = System.Collections.Generic.Dictionary<string, string>;

using Foo = System.Console;

Employee employee = new()

{

 { "Name", "John Doe" }

};

Foo.WriteLine(employee["Name"]);

Foo.ReadLine();

With C# 12, however, you can now create an alias for a type that isn’t a named type. You can
create a using alias for a tuple, as seen in Code Listing 42.

Code Listing 42: Using Alias on a Tuple

using TuplePoints = (int x, int y);

using Foo = System.Console;

TuplePoints p = (3, 4);

Foo.WriteLine(p.x);

Foo.WriteLine(p.y);

Foo.ReadLine();

Being able to alias any type is useful because it reduces the amount of code you need to write,
making your code more readable.

Experimental attribute

Library authors will most likely make use of the Experimental attribute the most. I’m not so

sure that this can be classified as a feature in C# 12, but it’s here, so let’s have a look at it.

Code Listing 43: Using the Experimental Attribute

using System.Diagnostics.CodeAnalysis;

 63

var person = new Person { Name = "John" };

var age = person.GetAge(1980);

var guid = Guid.NewGuid();

var age2 = person.GetAge(guid);

Console.WriteLine(age);

public class Person

{

 public string Name { get; set; }

 public int GetAge(int yearBorn)

 {

 // Do some standard calculation.

 // Just return default for now.

 return default;

 }

 [Experimental("fef6b55e36f753c893f5afe8435bcca1"

 , UrlFormat = "https://gist.github.com/dirkstrauss/{0}")]

 public int GetAge(Guid guid)

 {

 // Do advanced experimental calculation.

 // Just return default for now.

 return default;

 }

}

Code Listing 43 shows some boilerplate code for a class called Person that has two GetAge

methods. The first method is one that is safe to use, but I have included another experimental
method that is slightly risky to use.

The Experimental attribute allows me to decorate my second GetAge method and give it a

diagnostic ID that the compiler can use to report any use of my method. It also allows me to set
a URL for the corresponding documentation.

 64

Figure 30: The Error Message Displayed in Visual Studio

As seen in Figure 30, if I try to use this experimental feature, Visual Studio will display this
warning to me, allowing me to click on the diagnostic ID that will take me to the relevant
documentation for this warning. I have used a GUID, but you might be used to seeing these as
compiler warnings in Visual Studio starting with “CS.”

 Note: You can take a look at some examples of these compiler warnings here.

In order for me to use this experimental feature, I need to explicitly suppress the warning in my
code, as seen in Code Listing 44.

Code Listing 44: Suppressing the Warning

var guid = Guid.NewGuid();

#pragma warning disable fef6b55e36f753c893f5afe8435bcca1 // Type is for

evaluation purposes only and is subject to change or removal in future

updates. Suppress this diagnostic to proceed.

var age2 = person.GetAge(guid);

#pragma warning restore fef6b55e36f753c893f5afe8435bcca1 // Type is for

evaluation purposes only and is subject to change or removal in future

updates. Suppress this diagnostic to proceed.

I can also use the <NoWarn> csproj property to suppress this warning, as seen in Code Listing

45.

Code Listing 45: Using the <NoWarn> csproj Property

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net8.0</TargetFramework>

 <ImplicitUsings>enable</ImplicitUsings>

 <Nullable>enable</Nullable>

 <NoWarn>fef6b55e36f753c893f5afe8435bcca1</NoWarn>

 </PropertyGroup>

</Project>

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/compiler-messages/feature-version-errors

 65

Personally, I dislike the #pragma warning directive in code, but it provides a lot of visibility and

expressiveness in the fact that you are suppressing a compiler warning. I would rather use the
#pragma warning directive (even though I dislike it) as opposed to the <NoWarn> property in the

csproj file. I feel that it’s almost too hidden away in the csproj file.

There is an Afrikaans saying “Stille waters, diepe grond, onder draai die duiwel rond,” which
translates to “Still waters run deep, and that is where the devil lurks.”

The devil in this detail is the <NoWarn> property in the csproj file suppressing a warning in the

code editor that you spend most of your time in. If I have suppressed a warning, I want to know
about it—and more importantly, I want other developers who contribute to my code to know
about it, too.

Interceptors

One of the most exciting and fun features in C# 12 has got to be interceptors. Microsoft warns
that interceptors are experimental and only available in preview mode with C# 12, and that this
feature may be subject to breaking changes or removal in a future release.

It goes without saying that you are not encouraged to use this in production. There, I’ve said it.
With that out of the way, let’s give it a whirl.

You will see in Code Listing 46 that I have a class called ArraySorter with a horribly inefficient

Sort method.

 Tip: Do not use this Sort method in your code… ever.

This is basically a bubble sort, but it is not high-performance when having to sort large arrays.

Code Listing 46: The Old ArraySorter Class

namespace InterceptorDemo;

public class ArraySorter

{

 public void Sort(int[] array)

 {

 Console.WriteLine($"Sorting array using Bubble Sort to sort

{array.Length} elements");

 bool swapped;

 do

 {

 swapped = false;

 for (int i = 0; i < array.Length - 1; i++)

 {

 66

 if (array[i] > array[i + 1])

 {

 int temp = array[i + 1];

 array[i + 1] = array[i];

 array[i] = temp;

 swapped = true;

 }

 }

 } while (swapped);

 }

}

In my Program.cs file, seen in Code Listing 47, I am creating an array of random integers.

Code Listing 47: The Program.cs Class

using System.Diagnostics;

using InterceptorDemo;

var random = new Random();

var largeArray = Enumerable.Range(0, 50000).Select(x =>

random.Next()).ToArray();

var sorter = new ArraySorter();

var stopwatch = Stopwatch.StartNew();

sorter.Sort(largeArray);

stopwatch.Stop();

Console.WriteLine($"Time taken: {stopwatch.ElapsedMilliseconds} ms");

Console.ReadLine();

I then instantiate my ArraySorter class and call the Sort method, passing it the largeArray

variable.

 67

Figure 31: The Bubble Sort Results

The results of the current Sort method are displayed in Figure 31.

 Tip: Do not increase the size of the largeArray beyond 50,000 and run the bubble
sort—you’ll be here forever and a day.

What I want to do is hijack this inefficient Sort method. I want to implement a coup d'état and

overthrow the bubble sort. And I want to do this without changing the calling code—otherwise, I
couldn’t call this an “interceptor” at all.

Code Listing 48: The csproj File

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>net8.0</TargetFramework>

 <ImplicitUsings>enable</ImplicitUsings>

 <Nullable>enable</Nullable>

 <InterceptorsPreviewNamespaces>$(InterceptorsPreviewNamespaces);Interce

ptorDemo</InterceptorsPreviewNamespaces>

 </PropertyGroup>

</Project>

To start off, I need to modify the csproj file and opt in to use the experimental interceptors
feature. Let’s add the property <InterceptorsPreviewNamespaces> and include our

InterceptorDemo namespace in here.

Next, we need to add the InterceptsLocationAttribute, which is crucial for implementing

interceptors, as this is not yet available in our build of C# 12. You can see this in Code Listing
49. Put simply, this allows us to use the interceptor feature.

 68

Code Listing 49: The InterceptsLocationAttribute Helper Class

namespace System.Runtime.CompilerServices

{

 [AttributeUsage(AttributeTargets.Method, AllowMultiple = false)]

 internal sealed class InterceptsLocationAttribute : Attribute

 {

 public InterceptsLocationAttribute(string filePath, int line, int

column) { }

 }

}

I then create a class called Inception, as seen in Code Listing 50.

Code Listing 50: Our Interceptor

using System.Runtime.CompilerServices;

namespace InterceptorDemo;

public static class Inception

{

 [InterceptsLocation(

 filePath: "C:_repos\\InterceptorDemo\\Program.cs",

 line: 11,

 column: 8)]

 public static void InterceptSort(

 this ArraySorter arraySorter, int[] array)

 {

 Console.WriteLine($"Intercept using Array.Sort to sort

{array.Length} elements");

 Array.Sort(array);

 }

}

You need to tell the interceptor exactly what method to intercept. Let’s break this down. We
have the following moving parts in our static InterceptSort method:

• filePath: The path to your Program.cs file.
• line: The line in your Program.cs file where sorter.Sort(largeArray) is found.
• column: The column number of the start of the Sort method in the Program.cs file.
• this ArraySorter arraySorter: The InterceptSort method is an extension

method, so we need to tell it which class to act on (which class we need to intercept)
• int[] array: Tells our InterceptSort method that we are passing an array of

integers.

 69

To clarify the line and column values, have a look at Figure 32.

Figure 32: Finding the Line and Column Values

These values can also be found in the bottom-right corner of your editor window in Visual Studio

when you place your cursor at the start of the Sort method.

 Note: It goes without saying that the values you will have for your InterceptSort
method for line and column will differ from mine in the code example in Code Listing
50.

You are now ready to run your application. Give it a whirl and look at the console window seen
in Figure 33.

Figure 33: The Sort Method Intercepted

The interceptor jumps into action and grabs the call to the Sort method, allowing our code to

use a more efficient way to sort our array of integers.

 70

For fun, try changing up the number of elements in our array of integers and running the
intercepted Sort method. Interceptors are really great to work with when thinking about code

generators, but how much use they will be to the wider developer community remains to be
seen. That is, if interceptors make it out of the experimental phase.

In conclusion

This chapter took us through a buffet of new features introduced in C# 12. One feature that I
didn’t cover was inline arrays. This is because it is more aimed at the runtime team at Microsoft
and library authors. You can read more about inline arrays here.

It is a very niche use case that I didn’t think would benefit the larger audience of this book. It’s
like finding a tub of tofu on the buffet table. Some folks will pick at it, while others won’t.
Invariably, you will find it largely untouched after the party is over. If I erred in omitting this
feature in the book, I apologize. Perhaps it’s just me that doesn’t like tofu.

That being said, C# 12 brings with it some really interesting features and gives me the feeling
that C# 13 might build on some of these in the next release.

In the next chapter, we will have a look at some more new features in .NET 8.

https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-12#inline-arrays and have a read

 71

Chapter 3 More New .NET 8 Features

We’re not done yet with the new features in .NET 8. There are a few more things we need to
talk about that are more suited to a chapter of their own. Starting off this foray into what’s new,
let us look at AOT.

AOT support

You are now able to compile your code into native code using native AOT. This allows you to
take C# and .NET code and compile it to native code the same way C++, Rust, or Go would
compile. This means no .NET dependency, no IL code, and no JIT, making for very fast start up
times that are very memory efficient.

AOT stands for ahead-of-time and is the counterpart of JIT, which stands for just-in-time
compilation.

Figure 34: JIT vs. AOT Compilation

From the illustration in Figure 34, you can see how JIT and AOT differ. With AOT, we are
generating the native code that runs on the target machine when we compile the application.

7 2 S 1 1 g s

 0 G

 [() m a g e 1 2 D o Q

 q

 5 3 4 . 4 8 2 2 . 9 2 4 4 . 4 2 7 . 7 u 1 2 e

 W * n

 B T

 / F 1 5 6 3 . 3 8 3 9 . 7 9 2 1 7 0 . 3 7 3 2 T m 0 . 3 7 3 2 C 0
 / G S 1 1 g s

 0 G

 [9 2 r e / S p a n

 E M C I D 0 / L a n g (e n - U S) n / S u b t y p e / F o o t e r > > B D C q

 0 . 0 0 0 0 0 9 1 2 0 6 1 2 7 9 2 2 e
 1 0 2 7 * n

 B T

 / F 1 1 2 T f
 7 0 9 . 6 6 2 1 7 0 2 T m 0 2 C 0
 / W i t h t h e t r a d i t i o n a l J I T c o m p i l e r , t h e C # c o d e i s t u r n t i f i n t o I L S 1 1 g s

 0 G

 [()] T J

 E T

 Q

 q

 0 . 0 0 0 0 0 9 1 2 0 6 1 2 7 9 2 2 e
 1 0 2 7 * n

 B T

 / F 1 3 6 9 . 7 9
 7 0 9 . 6 6 2 1 7 0 2 T m 0 2 C 0
 / , S 1 1 g s

 0 G

 [()] T J

 E T

 Q

 q

 0 . 0 0 0 0 0 9 1 2 0 6 1 2 7 9 2 2 e
 1 0 2 7 * n

 B T

 / F 1 3 1 2 9 1
 7 0 9 . 6 6 2 1 7 0 2 T m 0 2 C 0
 / G S 1 1 g s

 0 G

 [()] T J

 E T

 Q

 q

 0 . 0 0 0 0 0 9 1 2 0 6 1 2 7 9 2 2 e
 1 0 2 7 * n

 B T

 / F 1 3 6 . 3 m 7 0 9 . 6 6 2 1 7 0 2 T m 0 2 C 0
 / w h i c h i s t h e n t r a n s f o r m e d i n t o 35

 73

 <TargetFramework>net8.0</TargetFramework>

 <Nullable>enable</Nullable>

 <ImplicitUsings>enable</ImplicitUsings>

 <InvariantGlobalization>true</InvariantGlobalization>

 <PublishAot>true</PublishAot>

 </PropertyGroup>

</Project>

Another change that you will notice in Code Listing 52 is the new method CreateSlimBuilder

in the Program.cs file. This registers the minimal number of services required for our API
project.

Code Listing 52: The Program.cs File

using System.Text.Json.Serialization;

var builder = WebApplication.CreateSlimBuilder(args);

builder.Services.ConfigureHttpJsonOptions(options =>

{

 options.SerializerOptions.TypeInfoResolverChain.Insert(0,

AppJsonSerializerContext.Default);

});

var app = builder.Build();

var sampleTodos = new Todo[] {

 new(1, "Walk the dog"),

 new(2, "Do the dishes", DateOnly.FromDateTime(DateTime.Now)),

 new(3, "Do the laundry",

DateOnly.FromDateTime(DateTime.Now.AddDays(1))),

 new(4, "Clean the bathroom"),

 new(5, "Clean the car",

DateOnly.FromDateTime(DateTime.Now.AddDays(2)))

};

var todosApi = app.MapGroup("/todos");

todosApi.MapGet("/", () => sampleTodos);

todosApi.MapGet("/{id}", (int id) =>

 sampleTodos.FirstOrDefault(a => a.Id == id) is { } todo

 ? Results.Ok(todo)

 : Results.NotFound());

 74

app.Run();

public record Todo(int Id, string? Title, DateOnly? DueBy = null, bool

IsComplete = false);

[JsonSerializable(typeof(Todo[]))]

internal partial class AppJsonSerializerContext : JsonSerializerContext

{

}

You will also notice, by looking at Code Listing 52, that we have a partial class called
AppJsonSerializerContext that is registered with the ConfigureHttpJsonOptions. This

allows the data to be serializable without using reflection and allows us to execute it without
using a JIT compiler.

Due to the fact that native code has to be generated, some things, such as reflection-based
JSON serialization, will not work with AOT.

Figure 37: Running dotnet publish

If we have to run dotnet publish -c Release in the terminal in Visual Studio, you will notice

that it generates native code, as seen in Figure 37.

When we look at the published files (see Figure 38), you will notice that it contains a single
executable file that is self-contained, because it has been ahead-of-time compiled into native
code.

 75

Figure 38: The Published Files

Seeing as Native AOT applications don’t use JIT when the application runs, these apps can run
in restricted environments where JIT isn’t allowed. You can also publish an app using a specific
runtime identifier.

Publishing an app for Windows as a native AOT app, you can run dotnet publish -r win-
x64 -c Release.

Publishing an app for Linux as a native AOT app, you can run dotnet publish -r linux-
arm64 -c Release.

Just note that you can’t publish cross-platform using AOT. When compiling on Windows, the
app is native Windows x64 code. When compiling on Linux, your .exe will not run on Windows.

AOT advantages

AOT has a number of advantages:

• Improvement in startup performance.
• Smaller app size, since it’s not JIT.
• Consumes less memory, saving us money when running in the cloud.

AOT disadvantages

AOT also has a few disadvantages:

• As there is no JIT, all native code must be generated at compile time.
• Reflection is not available, which required us to add extra code to serialize JSON data.
• Compile time is longer.
• We require platform-specific tools, such as the C++ tools on Windows.
• No cross-platform publishing means AOT apps are not portable.
• Dependencies must also be AOT-compatible.

 76

When to use AOT

So, how do you know when to use AOT applications? Well, the short answer is: when you
create cloud-native APIs. This will allow for increased performance, utilizing fewer resources.

New exception handling in ASP.NET Core 8

Exception handling is something with which all developers are very familiar. When something
exceptional happens in your code—something that you didn’t expect—you need to handle that.
ASP.NET is no exception. While exception handling in ASP.NET was possible before, it
required you to write your own middleware in order to handle it correctly.

With .NET 8, Microsoft has now given developers the ability to have an exception handler class,
specifically made for exception handling, that you can add to your pipeline. To illustrate this, I
will create a very simple Web API project, as seen in Code Listing 53.

Code Listing 53: A Basic Web API Project

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

app.MapGet("/api/gettasks", () =>

{

 throw new InvalidProgramException("Something went wrong");

});

app.Run();

I am simply throwing an exception when the /gettasks endpoint is called. I also have a .http

file that allows me to test my API inside Visual Studio. The code is illustrated in Code Listing 54.

Code Listing 54: The .http File

@ExceptionHandlingDemo_HostAddress = http://localhost:5105

GET {{ExceptionHandlingDemo_HostAddress}}/api/gettasks

Accept: application/json

Your port might be different from mine, but you can configure this in the debug properties if you
like. Speaking of the debug properties, you can find these under the Debug menu in Visual
Studio, as seen in Figure 39.

 77

Figure 39: Finding the Debug Properties

Clicking on the menu called Debug Properties will display the Launch Profiles window.

 Note: It seems strange that a menu called Debug Properties would launch a
window called Launch Profiles. Just be aware of this disconnect in the naming. It
might be a bug in Visual Studio.

As seen in Figure 40, the Launch Profiles window allows you to specify the app URL. You can
also uncheck the Launch browser option (as I have done) to run the API without opening a
browser window.

 78

Figure 40: Launch Profiles

Running my API and sending a request to my /gettasks endpoint results in the exception, as

seen in Figure 41.

This response window is quite rich in the information it returns. You can see the raw response,
the headers, and the request that resulted in the exception.

But while the default is fine, we might want to handle exceptions on our own—and this is where
the exception handler class comes into play.

IExceptionHandler is a new interface that allows developers to handle exceptions from a

known location. Implementations of IExceptionhandler are registered by calling

IServiceCollection.AddExceptionHandler<T>.

If you register multiple implementations, they are called in the order they’re registered. Once an
exception handler handles a request, you can return true to stop processing, or false to

continue processing.

Any exceptions not handled by the exception handler will then fall back to the default behavior
from middleware.

Let’s see how to implement this in our project by looking at some code.

 79

Figure 41: The Request Exception

Have a look at the code in Code Listing 55. This gives us a lot of control over the exceptions we
handle in our application. You will notice that I simply return true, which will stop the processing

right there.

Code Listing 55: Our CustomExceptionHandler Class Implementing IExceptionHandler

using Microsoft.AspNetCore.Diagnostics;

namespace ExceptionHandlingDemo;

public class CustomExceptionHandler : IExceptionHandler

{

 public async ValueTask<bool> TryHandleAsync(HttpContext httpContext,

 Exception ex,

 CancellationToken cancellationToken)

 {

 80

 httpContext.Response.StatusCode = 500;

 httpContext.Response.ContentType = "text/plain";

 await httpContext.Response.WriteAsync($"Custom Exception Handler:

{ex.Message}");

 return true;

 }

}

Now that we have our custom exception handler, we need to add it to our services, as seen in
Code Listing 56.

Code Listing 56: Modifying the Program.cs File

using ExceptionHandlingDemo;

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddExceptionHandler<CustomExceptionHandler>();

var app = builder.Build();

app.UseExceptionHandler(_ => { });

app.MapGet("/api/gettasks", () =>

{

 throw new InvalidProgramException("Something went wrong");

});

app.Run();

You will notice that AddExceptionHandler is a new API, and we just pass it the

CustomExceptionHandler class. In effect, this adds our IExceptionHandler implementation

to the services. These implementations are then used by the exception handler middleware to
handle unexpected exceptions.

We then add the middleware by adding the code app.UseExceptionHandler(_ => { }); to

the Program.cs file. You should notice the _ => {} configuration lambda here; this is because

the middleware is supposed to look for the CustomExceptionHandler we created, but it

doesn’t. If you used app.UseExceptionHandler();, you will immediately see an error when

running your application. This is because UseExceptionHandler doesn’t assume that if we

have AddExceptionHandler, that it must use our custom IExceptionHandler implementation.

You can view the discussion on GitHub here.

As a workaround for this error, we just use the empty configuration lambda using the _ discards.

If we wanted to, we could configure options here for our custom exception handler. For this
example, however, we just pass in the empty configuration lambda.

https://github.com/dotnet/aspnetcore/issues/51888

 81

Running the API again and calling our /gettasks endpoint, we will see the exception handled

by our custom exception handler, as expected (see Figure 42).

Figure 42: The Custom Exception Handler in Action

And that’s all there is to it. This is the new exception handling capability in ASP.NET Core 8,
allowing developers to streamline and enhance error management within their applications.
Exception handling is critical to any robust application. In ASP.NET Core 8,
IExceptionHandler improves this significantly. It allows for cleaner, more maintainable code.

Bearer tokens in .NET 8 Identity

Thinking about modern .NET applications, identity and auth in .NET have been, to put it mildly,
somewhat painful. In .NET 8, however, Microsoft set out to improve identity and auth. Suffice it
to say, it has gotten a lot better in .NET 8.

Code Listing 57: A Basic Web API

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

app.Run();

Looking at Code Listing 57, we will start off with the simplest code possible.

We are going to turn something really simple into the code in Code Listing 58, which has identity
and auth in it.

 82

Code Listing 58: The Completed Web API Code

using System.Security.Claims;

using Microsoft.AspNetCore.Identity;

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;

using Microsoft.EntityFrameworkCore;

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddAuthentication()

 .AddBearerToken(IdentityConstants.BearerScheme);

builder.Services.AddAuthorizationBuilder();

builder.Services.AddDbContext<AppDbContext>(options =>

options.UseSqlite("Datasource=adminapp.db"));

builder.Services.AddIdentityCore<AdminUser>()

 .AddEntityFrameworkStores<AppDbContext>()

 .AddApiEndpoints();

var app = builder.Build();

app.MapIdentityApi<AdminUser>();

app.MapGet("/", (ClaimsPrincipal user) => $"Welcome

{user.Identity!.Name}")

 .RequireAuthorization();

app.Run();

class AdminUser : IdentityUser { }

class AppDbContext : IdentityDbContext<AdminUser>

{

 public AppDbContext(DbContextOptions<AppDbContext> options) :

base(options) { }

}

Let’s start breaking this down. You will notice the following code, class AdminUser :
IdentityUser { }, which is just my user that extends the IdentityUser class.

The next thing I’m going to do is wire up some services.

 83

As seen in Code Listing 59, I have an extract of the code in Code Listing 58. Here, I am starting
off by adding AddAuthentication(), which registers services required by authentication

services, and then adding AddBearerToken, which adds bearer token authentication.

Note that this is not a JSON web token, but it is still a self-contained, stateless bearer token.

Next, we add AddAuthorizationBuilder(), which adds authorization services to the

IServiceCollection. From an auth perspective, that’s all I needed to do.

Code Listing 59: Wiring Up Services

builder.Services.AddAuthentication()

 .AddBearerToken(IdentityConstants.BearerScheme);

builder.Services.AddAuthorizationBuilder();

To store the user data, I will be using Entity Framework Core and SQLite as the provider. In
.NET 8, Entity Framework is really fast, a perfectly viable solution for your requirements. First,
we need to add some NuGet packages:

• Microsoft.AspNetCore.Identity.EntityFrameworkCore
• Microsoft.EntityFrameworkCore.Sqlite
• Microsoft.EntityFrameworkCore.Design

We add the design NuGet package because we are going to be working with migrations. We
now need to add a DbContext, which we add as seen in Code Listing 60, extending the

IdentityDbContext class using the AdminUser as the user.

Code Listing 60: Adding the DB Context

class AppDbContext : IdentityDbContext<AdminUser>

{

 public AppDbContext(DbContextOptions<AppDbContext> options) :

base(options) { }

}

In Code Listing 61, we register the DbContext to use SQLite as the provider, with a data source

called adminapp.db.

Code Listing 61: Registering DB Context Services

builder.Services.AddDbContext<AppDbContext>(options =>

options.UseSqlite("Datasource=adminapp.db"));

builder.Services.AddIdentityCore<AdminUser>()

 .AddEntityFrameworkStores<AppDbContext>()

 .AddApiEndpoints();

 84

After registering the DbContext, we add identity with AddIdentityCore, using AdminUser. We

also add AddEntityFrameworkStores(), which adds the Entity Framework implementation of

identity information stores.

We then use AddApiEndpoints() to add configuration and services required to support

IdentityApiEndpointRouteBuilderExtensions.

Code Listing 62 illustrates the game-changing code in this project of ours. Before .NET 8, if you
wanted to have registration endpoints, login endpoints, or refresh token endpoints, you had to
manually map these. That is no longer required. Now, all you need to do is call
MapIdentityApi and specify the user object—and that’s it.

Code Listing 62: Adding MapIdentityApi

var app = builder.Build();

app.MapIdentityApi<AdminUser>();

app.MapGet("/", (ClaimsPrincipal user) => $"Welcome

{user.Identity!.Name}")

 .RequireAuthorization();

app.Run();

This will go ahead and add all those endpoints for you. To illustrate an endpoint that requires
authorization, I am adding authorization to the root that simply returns a welcome message to
an authenticated user.

To see this in action, we need to run our migrations. Do this by running dotnet build to check

if the build succeeds and then run dotnet ef migrations add InitialCreate to add the

migrations, as seen in Figure 43.

Figure 43: Adding Migrations

 85

If you receive an error message stating, Could not execute because the specified command or
file was not found, try running dotnet tool install --global dotnet-ef. After that has

completed, try running dotnet ef migrations add InitialCreate again.

Lastly, to create your SQLite file, run dotnet ef database update, as seen in Figure 44.

Figure 44: Creating the SQLite File

We are now ready to run our API and test the endpoints using Postman.

Figure 45: Trying to Access API Unauthorized

 86

Looking at Figure 45, if I try to call the API, I will get a 401 Unauthorized response. I have to

obtain a bearer token first, and in order to get a bearer token, I need to register.

Figure 46: Calling the Register Endpoint

As seen in Figure 46, call the /register endpoint using the JSON in Code Listing 63.

Code Listing 63: The Register JSON

{

 "username": "dirkstrauss",

 "password": "ai0:CBn^14N",

 "email": "dirk@email.com"

}

This will register me here as a user in my API. Looking at my SQLite table in Figure 47, I can
see that my user has been registered successfully with all the information provided.

 87

Figure 47: The Registered User

After registering, I can attempt to obtain a bearer token from my /login endpoint, as seen in

Figure 48.

Figure 48: Calling the Login Endpoint

If my username and password are correct, I will receive a 200 OK response, and I will receive a

bearer token and a refresh token, as seen in Code Listing 64.

Code Listing 64: The Login Response

{

 "tokenType": "Bearer",

 "accessToken": "CfDJ8OKNDhwzfXtPpTzDnmhcGVTqch0Me2U8UB_bc-wd-H2Xg",

 88

 "expiresIn": 3600,

 "refreshToken": "012QZDywGuk3qP-eSZ8apG0D4DEg06tcykxqH16-KiEs7dgg"

}

I can use the bearer token in the next step.

 Note: The bearer token and refresh token in Code Listing 64 have been edited to
be shorter. This was to display the response neatly in the code block. In reality, the
tokens returned are much longer.

I then try to call my root endpoint again, only this time, I add the bearer token to the Auth tab in
Postman. As seen in Figure 49, I received a successful welcome response back.

Figure 49: Calling the Root Endpoint Again

It is also important to note that when calling the endpoint using the bearer token, I am not
making any calls back to the database to validate that token. This is because it is a stateless,
self-contained token.

The last thing I want to touch on is the refresh token. The purpose of the refresh token in Code
Listing 64 is to be stored locally on the client. It can then be used when the bearer token has
expired.

This means that I can go to the /refresh endpoint and do an HTTP POST using the JSON in

Code Listing 65.

 89

Code Listing 65: Calling the Refresh API

{

 "refreshToken": "012QZDywGuk3qP-eSZ8apG0D4DEg06tcykxqH16-KiEs7dgg"

}

If it is a valid refresh token, then it will return a new bearer and refresh token for me. If you are
interested in seeing what endpoints are available, place your mouse cursor on MapIdentityApi

and press Ctrl+F12.

You will see the following endpoints:

• /register
• /login
• /refresh
• /confirmEmail
• /resendConfirmationEmail
• /forgotPassword
• /resetPassword
• /manage/2fa
• /manage/info

This makes it extremely easy to set up authorization and identity on any app. This is not
exclusive to minimal web APIs.

Data annotations updates

There are a few new data annotation attributes added to .NET 8. As you know, data annotations
are used mainly for validation purposes, and in this example, I will be using an API to call
endpoints that validate the models in my project.

As seen in Code Listing 66, I have a controller that calls out to a few APIs. The model is
validated, and if valid, just returns an Ok result.

If, however, the model is invalid, it means that one of the validations applied by the data
annotation attributes caught an invalid input.

We will be looking at the following data annotations:

• Range
• Length
• AllowedValues
• DeniedValues
• Base64

I am also going to use an .http file to test my API endpoints.

 90

Code Listing 66: The Demo Controller

using DataAnnotationsDemo.Models;

using Microsoft.AspNetCore.Mvc;

namespace DataAnnotationsDemo.Controllers;

[ApiController]

[Route("[controller]")]

public class DemoController : Controller

{

 [HttpPost("rangedemo")]

 public IActionResult RangeDemo([FromBody] RangeExampleModel body)

 => !ModelState.IsValid ? BadRequest(ModelState) : Ok(body);

 [HttpPost("lengthdemo")]

 public IActionResult LengthDemo([FromBody] LengthExampleModel body)

 => !ModelState.IsValid ? BadRequest(ModelState) : Ok(body);

 [HttpPost("allowedvaluesdemo")]

 public IActionResult AllowedValuesDemo([FromBody]

AllowedValuesExampleModel body)

 => !ModelState.IsValid ? BadRequest(ModelState) : Ok(body);

 [HttpPost("deniedvaluesdemo")]

 public IActionResult DeniedValuesDemo([FromBody]

DeniedValuesExampleModel body)

 => !ModelState.IsValid ? BadRequest(ModelState) : Ok(body);

 [HttpPost("base64demo")]

 public IActionResult Base64Demo([FromBody] Base64ExampleModel body)

 => !ModelState.IsValid ? BadRequest(ModelState) : Ok(body);

}

Code Listing 67 shows the code to test the various endpoints. The code in the following .http file
will all validate successfully. Therefore, if you run the project and call these endpoints, you will
receive an Ok result.

Code Listing 67: The .http File

@DataAnnotationsDemo_HostAddress = http://localhost:5053

POST {{DataAnnotationsDemo_HostAddress}}/demo/rangedemo

Content-Type: application/json

{

 91

 "threshold": 50

}

POST {{DataAnnotationsDemo_HostAddress}}/demo/lengthdemo

Content-Type: application/json

{

 "testresults": [

 2,

 5,

 7

]

}

POST {{DataAnnotationsDemo_HostAddress}}/demo/allowedvaluesdemo

Content-Type: application/json

{

 "countryiso": "USA"

}

POST {{DataAnnotationsDemo_HostAddress}}/demo/deniedvaluesdemo

Content-Type: application/json

{

 "countryiso": "USA"

}

POST {{DataAnnotationsDemo_HostAddress}}/demo/base64demo

Content-Type: application/json

{

 "systeminput": "rtdfghjuytrfvcxs8796"

}

Range attribute with minimum and maximum exclusive

The Range attribute now allows you to set exclusive bounds on the range being validated. From

the code in Code Listing 68, you will see that I have a range of 20 to 80 set with the

MinimumIsExclusive and MaximumIsExclusive set to true.

 92

What this means is that I do not want to accept 20 as the lower value in the range, and I do not

want to accept 80 as my upper value. The valid values are, therefore, any values between 20

and 80, excluding 20 and 80.

This is why { "threshold": 50 } will validate, while { "threshold": 20 } and any value

lower, as well as { "threshold": 80 } and any value higher, will fail validation.

If you wanted to include 20 but exclude 80, you would set MinimumIsExclusive = false while

keeping MaximumIsExclusive unchanged.

Code Listing 68: Range Attribute with Minimum and Maximum Validation

using System.ComponentModel.DataAnnotations;

namespace DataAnnotationsDemo.Models;

public class RangeExampleModel

{

 [Range(20, 80, MinimumIsExclusive = true, MaximumIsExclusive = true)]

 public int Threshold { get; set; }

}

Simple and effective. I’m not sure how much mileage this attribute will get, but it is nice to have
the option to include or exclude the lower or upper bounds of the range values.

Length attribute

Keeping in the same vein when it comes to validation attributes, we now have a Length

attribute, as seen in Code Listing 69.

Code Listing 69: Length Validation Attribute

using System.ComponentModel.DataAnnotations;

namespace DataAnnotationsDemo.Models;

public class LengthExampleModel

{

 [Length(1, 3)]

 public ICollection<int> TestResults { get; set; } =

Array.Empty<int>();

}

 93

Here I want to validate the length of my collection of test results. I no longer need to chain
MinLength and MaxLength, for example [MinLength(1), MaxLength(3)], to make this work.

I can now simply state [Length(1, 3)] and be done with it. Also note that the parameters for

the Length(a, b) attribute are always inclusive.

AllowedValues attribute

 94

 public string CountryISO { get; set; } = string.Empty;

}

This is very handy for a variety of applications. In this example, only, { "countryiso": "US"
} and { "countryiso": "ZAR" } will fail validation. Everything else is permitted.

Base64String attribute

The last validation attribute is the Base64String attribute. This validates that the string passed

is a valid Base64 representation.

Code Listing 72: Base64 String Validation Attribute

using System.ComponentModel.DataAnnotations;

namespace DataAnnotationsDemo.Models;

public class Base64ExampleModel

{

 [Base64String]

 public string SystemInput { get; set; } = string.Empty;

}

A point to note here is that this does not determine that a string is a valid Base64 string that can
be decoded into something. In other words, if we decode SGVsbG8gd29ybGQ=, we will get Hello
world. If, however, if we try to decode rtdfghjuytrfvcxs8796, it will decode to gibberish.

All that the Base64String attribute does is check that the string contains valid Base64

characters (A-Z, a-z, 0-9, +,/,=).

In conclusion

.NET 8 brings with it so many new features and enhancements, it’s difficult to collect them all in
a single book. We haven’t even started looking in depth at the performance improvements in
.NET 8. That alone is significant.

If you want to read more about the topic of performance, have a look at this article by Stephen
Toub.

With the advent of AI and the expectation of AGI soon afterwards, you might be wondering if
your profession is in danger. I take solace in the fact that AI currently needs specific instructions
in order to deliver the best results.

https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-8/
https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-8/

 95

As developers, we all know that walking on water and developing an application perfectly from a
customer’s specification is possible if both are frozen. While this might be true for now, with AI
serving as a supplementary assistant to humans, this dynamic may soon change.

We need to remember that AI is but a machine capable of extrapolating the most likely answer
based on terabytes of data collected (or gorged on, if you like) during its training. LLMs drive
artificial intelligence, and companies spend eye-watering amounts of money on training and
running the hardware needed to make these machines work. But the human mind, which is
capable of feelings, emotions, and opinions, derives answers to problems elegantly with
relatively little information.

Now, I am not a doomsayer at all. I, too, have used and continue to use AI in my daily life. I also
have a Copilot subscription, but I was surprised when I watched the recent interview between
Microsoft’s Satya Nadella and Joanna Stern for The Wall Street Journal. Satya Nadella
mentioned Copilot+ PCs. These PCs will contain NPUs that will drive AI features on device.

These Copilot+ PCs will have a feature called Recall that will allow users to search over their
entire history. It will do this by continually taking screenshots of your desktop and then using
generative AI and the NPU to process this data and make it searchable right on your device.

 Note: Recall can be restricted from specific websites or apps and always lives on
your machine locally. Therefore, the promise is that it can be trusted. Whether this
trust will materialize with consumers is a different story altogether.

Artificial intelligence, warts and all, can also significantly benefit humanity. DeepMind AI set out
to solve an impossible problem in biology, the protein problem. 3D mapping of a single protein,
the building blocks of life, could take years to complete. What DeepMind did was create an AI
that could solve the protein problem in a fraction of the time.

They then set it loose on the 200 million proteins that are known to science. Using traditional
methods, according to DeepMind CEO Demis Hassabis, this would have taken a billion years to
solve. DeepMind took only a year, after which they made their protein database public as a gift
to humanity.

While we need to resign ourselves to the fact that AI is here to stay, we as a species have
something that no machine will ever have. That is the thirst for, and attainment of, knowledge.
The very fact that you are reading this book is a testament to that pursuit of knowledge, driven
by an innate desire to learn.

While it is true that AI may assist us, challenge our beliefs, and even change how we as
humans live and work, it will never and should never replace our quest for knowledge. As I write
these final lines, I am encouraged that our journey of learning is far from over: there will be a
.NET 9, and a .NET 10, and so on.

Our future is bright—not because of the tools we use or the solutions we create, but because of
the minds that wield them. The human spirit’s quest for knowledge is uniquely and profoundly
human.

Therefore, dear reader, I thank you for reading this book and allowing me to learn alongside
you.

	Table of Contents
	The Succinctly® Series of Books
	Let us know what you think

	About the Author
	Chapter 1 Introducing .NET 8
	The support window
	Preview
	Go-live
	Active support
	Maintenance support
	End of life

	What’s changed in .NET 8
	The .NET runtime
	Garbage collection
	Core .NET libraries
	Serialization
	Time abstraction
	Randomness
	Performance-focused types

	Extension libraries
	Keyed DI services
	Options validation
	LoggerMessageAttribute constructors

	C# 12
	.NET Aspire
	In conclusion

	Chapter 2 A Closer Look at C# 12
	Primary constructors
	What the compiler sees

	Collection expressions
	Ref readonly parameters
	Default lambda parameters
	Alias any type
	Experimental attribute
	Interceptors
	In conclusion

	Chapter 3 More New .NET 8 Features
	AOT support
	AOT advantages
	AOT disadvantages
	When to use AOT

	New exception handling in ASP.NET Core 8
	Bearer tokens in .NET 8 Identity
	Data annotations updates
	Range attribute with minimum and maximum exclusive
	Length attribute
	AllowedValues attribute
	DeniedValues attribute
	Base64String attribute

	In conclusion

